\(\int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx\) [123]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 95 \[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=-\frac {2 e}{a d \sqrt {e \sin (c+d x)}}+\frac {2 e \cos (c+d x)}{a d \sqrt {e \sin (c+d x)}}+\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{a d \sqrt {\sin (c+d x)}} \]

[Out]

-2*e/a/d/(e*sin(d*x+c))^(1/2)+2*e*cos(d*x+c)/a/d/(e*sin(d*x+c))^(1/2)-4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/si
n(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*sin(d*x+c))^(1/2)/a/d/sin(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3957, 2918, 2644, 30, 2647, 2721, 2719} \[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=-\frac {2 e}{a d \sqrt {e \sin (c+d x)}}+\frac {2 e \cos (c+d x)}{a d \sqrt {e \sin (c+d x)}}+\frac {4 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{a d \sqrt {\sin (c+d x)}} \]

[In]

Int[Sqrt[e*Sin[c + d*x]]/(a + a*Sec[c + d*x]),x]

[Out]

(-2*e)/(a*d*Sqrt[e*Sin[c + d*x]]) + (2*e*Cos[c + d*x])/(a*d*Sqrt[e*Sin[c + d*x]]) + (4*EllipticE[(c - Pi/2 + d
*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(a*d*Sqrt[Sin[c + d*x]])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2647

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a*Cos[e +
f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Dist[a^2*((m - 1)/(b^2*(n + 1))), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {\cos (c+d x) \sqrt {e \sin (c+d x)}}{-a-a \cos (c+d x)} \, dx \\ & = \frac {e^2 \int \frac {\cos (c+d x)}{(e \sin (c+d x))^{3/2}} \, dx}{a}-\frac {e^2 \int \frac {\cos ^2(c+d x)}{(e \sin (c+d x))^{3/2}} \, dx}{a} \\ & = \frac {2 e \cos (c+d x)}{a d \sqrt {e \sin (c+d x)}}+\frac {2 \int \sqrt {e \sin (c+d x)} \, dx}{a}+\frac {e \text {Subst}\left (\int \frac {1}{x^{3/2}} \, dx,x,e \sin (c+d x)\right )}{a d} \\ & = -\frac {2 e}{a d \sqrt {e \sin (c+d x)}}+\frac {2 e \cos (c+d x)}{a d \sqrt {e \sin (c+d x)}}+\frac {\left (2 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{a \sqrt {\sin (c+d x)}} \\ & = -\frac {2 e}{a d \sqrt {e \sin (c+d x)}}+\frac {2 e \cos (c+d x)}{a d \sqrt {e \sin (c+d x)}}+\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{a d \sqrt {\sin (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.75 (sec) , antiderivative size = 210, normalized size of antiderivative = 2.21 \[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=\frac {2 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \sqrt {e \sin (c+d x)} \left (\sec \left (\frac {c}{2}\right ) \sec (c) \left (3 \sin \left (\frac {c}{2}\right )+\sin \left (\frac {3 c}{2}\right )\right )-2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )-2 \sqrt {\csc ^2(c)} \csc (c+d x) \csc (d x-\arctan (\cot (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x-\arctan (\cot (c)))\right ) \sin (c) \sqrt {\sin ^2(d x-\arctan (\cot (c)))}-\frac {\csc (c) \csc (c+d x) \sec (c) (\sin (c+d x-\arctan (\cot (c)))+3 \sin (c-d x+\arctan (\cot (c))))}{\sqrt {\csc ^2(c)}}\right )}{a d (1+\sec (c+d x))} \]

[In]

Integrate[Sqrt[e*Sin[c + d*x]]/(a + a*Sec[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]^2*Sec[c + d*x]*Sqrt[e*Sin[c + d*x]]*(Sec[c/2]*Sec[c]*(3*Sin[c/2] + Sin[(3*c)/2]) - 2*Sec[c
/2]*Sec[(c + d*x)/2]*Sin[(d*x)/2] - 2*Sqrt[Csc[c]^2]*Csc[c + d*x]*Csc[d*x - ArcTan[Cot[c]]]*HypergeometricPFQ[
{-1/2, -1/4}, {3/4}, Cos[d*x - ArcTan[Cot[c]]]^2]*Sin[c]*Sqrt[Sin[d*x - ArcTan[Cot[c]]]^2] - (Csc[c]*Csc[c + d
*x]*Sec[c]*(Sin[c + d*x - ArcTan[Cot[c]]] + 3*Sin[c - d*x + ArcTan[Cot[c]]]))/Sqrt[Csc[c]^2]))/(a*d*(1 + Sec[c
 + d*x]))

Maple [A] (verified)

Time = 4.59 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.57

method result size
default \(-\frac {2 e \left (2 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-\cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )\right )}{a \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}\) \(149\)

[In]

int((e*sin(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/a/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*e*(2*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*Ellipt
icE((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))-(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF
((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))-cos(d*x+c)^2+cos(d*x+c))/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.29 \[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=-\frac {2 \, {\left ({\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} \sqrt {-i \, e} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} \sqrt {i \, e} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {e \sin \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{a d \cos \left (d x + c\right ) + a d} \]

[In]

integrate((e*sin(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

-2*((-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*sqrt(-I*e)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x +
 c) + I*sin(d*x + c))) + (I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*sqrt(I*e)*weierstrassZeta(4, 0, weierstrassPInve
rse(4, 0, cos(d*x + c) - I*sin(d*x + c))) + sqrt(e*sin(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\sqrt {e \sin {\left (c + d x \right )}}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate((e*sin(d*x+c))**(1/2)/(a+a*sec(d*x+c)),x)

[Out]

Integral(sqrt(e*sin(c + d*x))/(sec(c + d*x) + 1), x)/a

Maxima [F]

\[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=\int { \frac {\sqrt {e \sin \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((e*sin(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(e*sin(d*x + c))/(a*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=\int { \frac {\sqrt {e \sin \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((e*sin(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(e*sin(d*x + c))/(a*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \sin (c+d x)}}{a+a \sec (c+d x)} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\sqrt {e\,\sin \left (c+d\,x\right )}}{a\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

[In]

int((e*sin(c + d*x))^(1/2)/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)*(e*sin(c + d*x))^(1/2))/(a*(cos(c + d*x) + 1)), x)